Quantum Mechanical Molecular Interactions for Calculating the Excitation Energy in Molecular Environments: A First-Order Interacting Space Approach
نویسندگان
چکیده
Intermolecular interactions regulate the molecular properties in proteins and solutions such as solvatochromic systems. Some of the interactions have to be described at an electronic-structure level. In this study, a commutator for calculating the excitation energy is used for deriving a first-order interacting space (FOIS) to describe the environmental response to solute excitation. The FOIS wave function for a solute-in-solvent cluster is solved by second-order perturbation theory. The contributions to the excitation energy are decomposed into each interaction and for each solvent.
منابع مشابه
A numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators
Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...
متن کاملA computational molecular approach on chitosan vehicle for metformin
Density functional theory (DFT) calculations have been performed to study properties of chitosan (Chit) as a possible vehicle for carrying metformin (Met) drug. To this aim, the singular molecules of Met and Chit have been first optimized and sixteen possible bimolecular complexes have been subsequently constructed and optimized to obtaine the stabilized interacting structures. Two bimolecular ...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملA DFT and Molecular Dynamics Study on Inhibitory Action of Three Amine Derivatives on Corrosion of Carbon Steel
Inhibition efficiencies of three amine derivatives (Diethylenetriamine (I), Triethylenetetramine (II), and Pentaethylenehexamine (III)) have been studied on corrosion of carbon steel using density functional theory (DFT) method in gas phase. Quantum chemical parameters such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), hardness (η), po...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کامل